
Analysis (freely-walking)

Table of contents

1 Overview 1

2 Requirements for analysing the data from the MIC screen 2
2.0.1 Tree structure of processing functions 2

2.1 Level 1 - analyse per cohort: process_freely_walking_data 3
2.1.1 Inputs . 3
2.1.2 Outputs . 3
2.1.3 Description of process_data_features 3
2.1.4 Explanation of the different functions used to combine data. 5

2.2 Level 2 - analyse across cohorts: process_screen_data 6
2.2.1 Inputs . 6
2.2.2 Outputs . 7

2.3 Level 3 - Statistical analysis of the data across cohorts: make_summary_heat_maps_p27 7
2.4 Processing of other protocols . 7

1 Overview

The data acquired from freely-walking optomotor experiments, especially during the screen
using protocol 27, is analysed in two main steps.

The first step (process_freely_walking_data) is done per cohort (each vial of flies that was
run). This creates several “overview” level plots for the individual cohort.

The second step (process_screen_data) combines data from across cohorts and parses the
data based on the condition too. This creates plots that compare the behaviour of each strain
against the empty-split control flies.

1

2 Requirements for analysing the data from the MIC screen

In order for the processing pipeline to run, within each experiment folder there should be:

• a .ufmf video of the entire experiment
• a .mat ‘LOG’ file
• a subdirectory that contains the file ‘trx.mat’ and the “-feat.mat” file outputted by

FlyTracker.

The ufmf video is a compressed video format that is generated through the BIAS acquisition
software. The difference between frames is stored, not the entire frame data. The LOG file
contains metadata about the experiment (fly strain, date and time, which pattern was used for
which condition) and it also contains the frame numbers at which each condition started and
ended. This includes sub-parts of the conditions, such as when the stimulus changes direction.
These frame numbers are recorded during the experiment by MATLAB interfacing with the
image acquisition software, BIAS. The file ‘trx’ contains a MATLAB table array of the tracked
data from FlyTracker. Each row in the table corresponds to an individual object that was
tracked and the table contains columns of data about different behavioural metrics. All rows
should have arrays of the same length that correspond to the total number of frames in the
video.

~ What are the differences between feat and trx? When are they made during the tracking
process? ~

2.0.1 Tree structure of processing functions

Functions in red are used for processing the data. Functions in blue are used for plotting the
data.

• process_freely_walking_data

– process_data_features
∗ combine_data_one_cohort
∗ make_overview
∗ plot_all_features_filt
∗ plot_all_features_acclim
∗ comb_data_one_cohort_cond ***
∗ plot_allcond_onecohort_tuning
∗ plot_errorbar_tuning_curve_diff_contrasts
∗ plot_errorbar_tuning_diff_speeds
∗ generate_circ_stim_ufmf

· create_stim_video_loop

• process_screen_data

2

– comb_data_across_cohorts_cond
– generate_exp_data_struct
– plot_allcond_acrossgroups_tuning

2.1 Level 1 - analyse per cohort: process_freely_walking_data

2.1.1 Inputs

Requires string of the date for which you want to analyse the data. It will process all of the
data from experiments conducted with any protocol that are within that day.

Runs the function process_data_features per cohort and experiment.

2.1.2 Outputs

• Exports a text file of the number of flies ran per protocol and per strain.
• Results .mat file

– Contains: [LOG, feat, trx, comb_data, n_fly_data]
– per vial

• Figures:

– Acclim timeseries
– Feat_overview timeseries
– Timeseries per behavioural metric per vial.

2.1.3 Description of process_data_features

Processes the tracked data from FlyTracker.

Loads:

• LOG (metadata about the experiment.)
• feat (from FlyTracker)
• trx (from FlyTracker)

Saves in the results “.mat” file “_data.mat”:

• LOG
• feat (updated with “poorly tracked” flies removed)
• trx (updated with “poorly tracked” flies removed)
• comb_data (combined data from all flies in the vial across the entire experiment)

3

• n_fly_data (3 x 1 array of [n_flies_in_arena, n_flies_tracked, n_flies_removed]). Useful
to see how many flies were “lost” during the processing due to tracking errors.

1. Combine the tracking data for all flies within one vial across the entire
experiment

The data is not parsed based on condition yet.

The function comb_data_one_cohort combines the data from all flies within a single
experiment (vial of flies) into a single struct called comb_data. This struct contains fields
for each behavioural metric (e.g. ‘fv_data’) and each field contains a 2D array of size
[n_flies x n_frames]. This function takes in the output from FlyTracker (the ‘feat’ and
‘trx’ variables).

The data is first checked for incorect or incomplete tracking. It runs the function
check_tracking_FlyTrk which checks the rows of the table trx and removes any rows
that do not contain the mode number of datapoints (frames).

The data extracted directly from the FlyTracker output are:

• distance from the edge of the arena (from feat).
• heading (from trx).
• x position (from trx).
• y position (from trx).

Data calculated from this data:

• angular velocity (using the function vel_estimate)
• forward velocity (two point, in direction of heading)
• three point velocity in any direction (using the function calculate_three_point_velocity)
• turning rate (angular velocity / forward velocity)
• viewing distance (using the function calculate_viewing_distance)
• inter fly distance (using the function calculate_distance_to_nearest_fly)
• inter fly angle (using the function calculate_distance_to_nearest_fly)

[PNG - example of this “comb_data” structure.]

2. Create plots that give an overview of the behaviour of the flies during the
entire experiment.

• Runs the function make_overview which generates a figure containing histogram
subplots of the general behaviour of the flies over the entire length of the protocol.

[PNG - example of this figure]

4

• Runs the function plot_all_features_filt which generates a plot of timeseries
data for all flies over the entire length of the protocol. This figure is comprised of 4
subplots which show the forward velocity, angular velocity, turning rate and distance
from the centre of the arena across the entire experiment. Coloured rectangles are
used in the background to indicate when each condition occurred.

[PNG - example of this figure]

• Runs the function plot_all_features_acclim which generates a plot of timeseries
data for all flies during the 5 minutes of acclimatisation in the dark. It uses the
frame number that corresponds to the end of the acclimatisation period from the
LOG file to determine which range of data to plot. The forward velocity, angular
velocity, turning rate and both absolute and relative distance from the centre of the
arena are plotted.
acclim_end = LOG.acclim_off1.stop_f;
range_of_data_to_plot = 1:acclim_end;

[PNG - example of this figure]

3. Parse the behavioural data based on the conditions within the experiment.

The data from all flies is combined into an easier to manipulate ‘struct’ called DATA
through the function comb_data_one_cohort_cond.

[PNG - example of DATA structure.]

4. Plot the data that has been parsed based on condition.

• Runs the function plot_allcond_onecohort_tuning which generates a [(n_condi-
tions/2) x 2] subplot figure of the timeseries data during each condition (mean+SEM
of all the flies in the vial) as well as tuning curves per condition.

[PNG - example of this figure]

2.1.4 Explanation of the different functions used to combine data.

2.1.4.1 combine_data_one_cohort

This function is used within process_data_features to combine the data from all flies within
a single experiment (vial of flies) into a single struct called comb_data. This struct contains
fields for each behavioural metric (e.g. ‘fv_data’) and each field contains a 2D array of size
[n_flies x n_frames]. This function takes in the output from FlyTracker (the ‘feat’ and ‘trx’
variables).

Critically, this function checks for flies with bad tracking and removes them. The tracked
data returned from FlyTracker is also smoothed and checked for moments when the tracking

5

might have gone wrong (when vel > 50 mms-1), those points are set to NaN and filled using
an appropriate method for the datatype. This processed data is what is then saved to the
results file and used to create the cross cohort ‘DATA’ struct used for all downstream analyses
and plotting. The original data is never altered however and can be found in the original data
folder.

2.1.4.2 comb_data_one_cohort_cond

Both comb_data_one_cohort_cond and comb_data_across_cohorts_cond create the nested
data structure ‘DATA’ based on the conditions within the experiment. However, the single
cohort version is only used within process_data_features to create the ‘DATA’ struct that
is used for creating the overview time series plots that are saved per vial.

2.1.4.3 comb_data_across_cohorts_cond

This function is used within process_screen_data to combine the data from all flies across
multiple cohorts (vials of flies) into a single struct called DATA. This struct contains fields for each
behavioural metric (e.g. ‘fv_data’) and each field contains a 3D array of size [n_flies x n_frames
x n_cohorts]. This function takes in the output from multiple runs of process_data_features
(the ‘comb_data’ variable saved in the results .mat file). In order for this function to work, the
experiments must have been run using a protocol that saves the condition number to the LOG
file. This was not done for earlier protocols and so might cause trouble if trying to analyse
earlier experiments.

2.2 Level 2 - analyse across cohorts: process_screen_data

This function works by using the .mat results files that were generated after running
process_freely_walking_data. It heavily relies upon the structured format of the data
into the same ‘DATA’ struct created by comb_data_one_cohort_cond but instead uses
comb_data_across_cohorts_cond to generate the structure across all flies from multiple
cohorts.

• Runs the function comb_data_across_cohorts_cond to generate the struct DATA.
• Runs the funciton plot_allcond_acrossgroups_tuning to create [(n_conditions/2) x

2] subplot figures for each strain versus the empty split control flies. It creates 5 of these
subplot figures per strain, one for each data type [‘fv_data’, ‘av_data’, ‘curv_data’,
‘dist_data’, ‘dist_data_delta’].

2.2.1 Inputs

• String of the protocol e.g. ‘protocol_27’
• ‘.mat’ results files from process_data_features.

6

2.2.2 Outputs

• 5 x figures per strain (timeseries per condition)
• Text file and 2 plots of the number of vials per strain and the number of flies per strain.

[PNG - example of the timeseries plots for one strain against the empty split flies]

2.3 Level 3 - Statistical analysis of the data across cohorts:
make_summary_heat_maps_p27

This function generates a red-blue heatmap of the p-value for different behavioural metrics
across each condition compared to the empty-split control flies.

• It combines all of the data for protocol_27 in the same way as before using the function
comb_data_across_cohorts_cond.

• It then uses the function make_pvalue_heatmap_across_strains to generate arrays of
all of the p-values.

• A False-Detection Rate adjustment is performed using fdr_bh.
• The data is plotted altogether using the function plot_pval_heatmap_strains.

[PNG - example heatmap figure]

2.4 Processing of other protocols

Data from protocol_30 and protocol_31 run the functions plot_errorbar_tuning_curve_diff_contrasts
and plot_errorbar_tuning_diff_speeds, respectively. Which plot tuning curve plots in
addition to the timeseries plots.

Data from protocol_25 - individual flies used the script single_lady_analysis.m.

7

https://github.com/leburnett/freely-walking-optomotor/blob/processing_computer/plotting_functions/summary_plot/make_summary_heat_maps_p27.m

	Overview
	Requirements for analysing the data from the MIC screen
	Tree structure of processing functions
	Level 1 - analyse per cohort: process_freely_walking_data
	Inputs
	Outputs
	Description of process_data_features
	Explanation of the different functions used to combine data.

	Level 2 - analyse across cohorts: process_screen_data
	Inputs
	Outputs

	Level 3 - Statistical analysis of the data across cohorts: make_summary_heat_maps_p27
	Processing of other protocols

